网站首页  学院概况  师资队伍  本科生教育  研究生教育  科学研究  党委专栏  学生活动 
当前位置: 网站首页 > 学术讲座 > 正文

On the regularity of minimizers for rank 2 sub-Riemannian structures

发布时间:2018年10月05日 09:36   浏览次数:
报告人 Prof. Mario.Sigalo 年月 2018-10
08

题目:On the regularity of minimizers for rank 2 sub-Riemannian structures

报告人:Prof. Mario.Sigalotti(Université Pierre et Marie Curie (Paris 6)

报告时间:2018年10月8日15:30--16:30

报告地点:四川大学数学学院西303

摘要:It is a longstanding open problem whether length-minimizing curves insub-Riemannian geometry are smooth. No regularity result holding infull generality is known beyond Lipschitz continuity, even if nocounterexample is known of lesser than $C^\infty$ regularity. Wepresent a recent improvement of the existing partial resultsconcerning the $C^{1}$ regularity for a class of abnormallength-minimizers in rank 2 sub-Riemannian structures. As aconsequence of our result, all length-minimizers for rank 2sub-Riemannian structures of step up to 4 are of class $C^{1}$. (Joint

work with Davide Barilari, YacineChitour, Frédéric Jean, and Dario

Prandi.)

报告人简介:Mario Sigalotti,巴黎六大教授,主要研究领域为几何控制论。ESAIM: Control, Optimisation and Calculus of Variations,Journal on Dynamical and Control Systems等著名刊物编委。

关闭

Copyright © 2018四川大学数学学院版权所有
 地址:成都市一环路南一段24号
电话:028-85412720